Wie das FVK-Reperaturverfahren funktioniert, zeigt das DLR im eigenen Video.

Bei Strukturen aus Metall wird der beschädigte Bereich herausgeschnitten und neues Blech vernietet. Bei Bauteilen aus faserverstärkten Kunststoffen ist der Reparaturprozess komplizierter: "Da die Fasern lasttragend sind, also für den Zusammenhalt und die Belastbarkeit der Struktur sorgen, können wir hier nicht einfach Bohren oder Nieten. Sonst würden wir die Fasern noch weiter beschädigen", erklärt Markus Kaden den zentralen Unterschied bei der Reparatur von FVK gegenüber metallischen Werkstoffen. Stattdessen tragen die DLR-Forscher die beschädigten Materialschichten großflächig ab und ersetzen sie mit einem sogenannten Patch, ähnlich einem Pflaster. Dieser Patch besteht aus dem gleichen Material und hat die gleiche Faserausrichtung wie die zu reparierende Struktur.

Das DLR-Reparaturkonzept zeichnet sich durch seine spezielle Heiztechnologie aus, die eine sehr flexible Reparatur auch von gebogenen Strukturen ermöglicht: "Wir heizen – wie bei einem Induktionsherd – nur den Bereich des Patches und die beschädigte Stelle der Struktur. Dazu verwenden wir ein mittels Induktion erwärmtes Metallblech, das der Größe des Patches entspricht und das mit Hilfe eines Vakuumaufbaus auf den Patch gepresst wird. Unter Druck und Temperatur verbindet sich dieser dann mit der umliegenden Struktur."

Mobile Reparaturstation

Mit Unterstützung des DLR-Technologiemarketings haben die Stuttgarter Wissenschaftler eine mobile Reparaturstation entwickelt, mit deren Hilfe sie das Verfahren demonstrieren. Sie umfasst alle notwendigen Systeme, die für die Reparatur von FVK-Strukturen notwendig sind: Neben der Anlagentechnik für die induktive Beheizung des Metallblechs beinhaltet sie auch eine Vakuumpumpe, um den benötigten Druck auf den Patch zu erzeugen. Über Temperatursensoren können mit Hilfe der integrierten Steuerung die einzelnen Prozesse geregelt werden.