Rosenblütenblatt im Detail,

Die Epidermis eines Rosenblütenblatts wird in einer transparenten Schicht nachgebildet; diese wird in die Vorderseite einer Solarzelle integriert. (Bild: Guillaume Gomard/KIT)

Photovoltaik ähnelt im Prinzip der von Pflanzen betriebenen Photosynthese: Lichtenergie wird absorbiert und in eine andere Form von Energie konvertiert. Dabei ist es wichtig, das Lichtspektrum der Sonne möglichst breit zu nutzen und das Licht aus verschiedenen Einfallswinkeln aufzunehmen, da sich der Winkel mit dem Sonnenstand ändert. Pflanzen haben dies in ihrer langen Evolution erreicht – Grund genug für Photovoltaikforscher, sich bei der Entwicklung von Solarzellen mit breitem Absorptionsspektrum und hoher Einfallswinkeltoleranz an der Natur zu orientieren.

Wissenschaftler am KIT und am Zentrum für Sonnenenergie und Wasserstoff-Forschung BadenWürttemberg (ZSW) schlagen nun in der Zeitschrift Advanced Optical Materials vor, das äußere Abschlussgewebe von Blättern höherer Pflanzen, die sogenannte Epidermis, in einer transparenten Schicht nachzubilden und diese in die Vorderseite von Solarzellen zu integrieren, um deren Effizienz zu steigern.

Rosenblätter am besten geeignet

Zunächst untersuchten die Forscher am Lichttechnischen Institut (LTI), Institut für Mikrostrukturtechnik (IMT), Institut für Angewandte Physik (APH) und Zoologischen Institut (ZOO) des KIT sowie am ZSW die epidermalen Zellen verschiedener Pflanzenarten auf ihre optischen Eigenschaften und vor allem ihre Antireflexwirkung. Diese erwies sich als besonders stark bei Rosenblütenblättern, bei denen sie für stärkere Farbkontraste sorgt und damit die Chance auf Bestäubung erhöht.

Wie die Wissenschaftler unter dem Elektronenmikroskop feststellten, besteht die Epidermis der Rosenblütenblätter aus einem ungeordneten Feld dicht gedrängter Mikrostrukturen, zusätzlich gerippt durch zufällig platzierte Nanostrukturen. Um die Struktur dieser epidermalen Zellen über eine größere Fläche exakt zu reproduzieren, übertrugen die Forscher sie in eine Form aus Polydimethylsiloxan, einem Polymer auf Siliziumbasis, drückten die so entstandene negative Struktur in einen optischen Kleber ein und ließen diesen unter UV-Betrahlung aushärten.

„Diese Methode ist einfach und kostengünstig und erzeugt Mikrostrukturen von einer Tiefe und Dichte, wie sie sich mit künstlichen Techniken kaum erreichen lassen“, berichtet Dr. Guillaume Gomard, Leiter der Gruppe Nanophotonik am LTI des KIT.

Integration in organische Solarzelle

Die Wissenschaftler integrierten die transparente Nachbildung der Rosenblütenblätter-Epidermis in eine organische Solarzelle. Dadurch erhöhte sich die Energieumwandlungseffizienz bei senkrechtem Lichteinfall um zwölf Prozent (relative Steigerung). Bei sehr flachen Einfallswinkeln fiel die Effizienzsteigerung noch höher aus.

Die Forscher führen die Steigerung vor allem auf die hervorragende richtungsunabhängige Antireflexwirkung der nachgebildeten Epidermis zurück. Diese kann die Oberflächenreflexion unter fünf Prozent halten, auch wenn der Lichteinfallswinkel fast 80 Grad beträgt. Darüber hinaus fungiert jede einzelne der nachgebildeten epidermalen Zellen als Mikrolinse, wie Untersuchungen mit einem Konfokal-Lasermikroskop zeigten. Der Mikrolinseneffekt verlängert den optischen Pfad innerhalb der Solarzelle, steigert die Licht-Materie-Interaktion und erhöht die Wahrscheinlichkeit, dass die Lichtteilchen absorbiert werden.

„Unsere Methode lässt sich sowohl auf weitere Pflanzenarten als auch auf andere Photovoltaiktechnologien anwenden“, erklärt Guillaume Gomard. „Da die Oberflächen von Pflanzen multifunktional sind, könnte es künftig möglich sein, von ihnen mehrere Eigenschaften in einem Schritt zu übernehmen.“

Die Arbeit der Forscher wirft darüber hinaus eine grundlegende Frage auf: Welche Rolle spielt Unordnung in komplexen photonischen Strukturen? Zu dieser Frage laufen weitere Untersuchungen, von deren Ergebnissen die nächste Generation von Solarzellen profitieren könnte.

Sie möchten gerne weiterlesen?