• "Das ist Wahnsinn: Mehr als drei Jahre lang haben wir an unserer Rakete geplant, geschraubt und getestet - und jetzt sind wir einfach froh, dass der Start so gut funktioniert hat", freut sich Michael Schmid vom Decan-Team (Deutsche CanSat-Höhenrakete) der TU Berlin. "Bis zuletzt haben wir gezittert, ob wir tatsächlich alles richtig gemacht haben." Bild: DLR

    "Das ist Wahnsinn: Mehr als drei Jahre lang haben wir an unserer Rakete geplant, geschraubt und getestet - und jetzt sind wir einfach froh, dass der Start so gut funktioniert hat", freut sich Michael Schmid vom Decan-Team (Deutsche CanSat-Höhenrakete) der TU Berlin. "Bis zuletzt haben wir gezittert, ob wir tatsächlich alles richtig gemacht haben." Bild: DLR

  • Dabei gelang den Studenten mit der rund drei Meter langen und etwa 23 Kilogramm schweren Rakete ein Bilderbuchstart in den Himmel am Nordpolarkreis. Im Gegensatz zu den anderen beiden Teams setzt Decan beim Antrieb auf kommerzielle Feststoffmotoren, welche die Rakete auf fast anderthalbfache Schallgeschwindigkeit beschleunigen. Bild: DLR

    Dabei gelang den Studenten mit der rund drei Meter langen und etwa 23 Kilogramm schweren Rakete ein Bilderbuchstart in den Himmel am Nordpolarkreis. Im Gegensatz zu den anderen beiden Teams setzt Decan beim Antrieb auf kommerzielle Feststoffmotoren, welche die Rakete auf fast anderthalbfache Schallgeschwindigkeit beschleunigen. Bild: DLR

  • Zum Glück geht die in mühevoller Detailarbeit entwickelte Technik nach dem Flug nicht in den weitläufigen Wäldern rund um das schwedische Startzentrum verloren: Die Landeposition wird mit GPS ermittelt, Funksignale erleichtern die Bergung. Ein Hubschrauber bringt die Raketen zurück zum Startzentrum Esrange, wo sie den Teams zur Auswertung der Flugdaten übergeben werden. Bild: DLR

    Zum Glück geht die in mühevoller Detailarbeit entwickelte Technik nach dem Flug nicht in den weitläufigen Wäldern rund um das schwedische Startzentrum verloren: Die Landeposition wird mit GPS ermittelt, Funksignale erleichtern die Bergung. Ein Hubschrauber bringt die Raketen zurück zum Startzentrum Esrange, wo sie den Teams zur Auswertung der Flugdaten übergeben werden. Bild: DLR

  • Ziel des Studenten-Programms ist es, den Teilnehmern bereits während des Studiums erste Erfahrungen mit einem "echten" Raumfahrtprojekt zu ermöglichen. Dabei entwerfen, bauen und starten die Studenten eine eigene Rakete, führen sämtliche Tests durch und durchlaufen fünf Reviews. Bei solch einem Review werden alle kritischen Systeme überprüft. Dazu zählen etwa die Triebwerke, die Tanks und das Funksystem. Hier der Bau der Startrampe für die Rakete Faust. Bild: DLR

    Ziel des Studenten-Programms ist es, den Teilnehmern bereits während des Studiums erste Erfahrungen mit einem "echten" Raumfahrtprojekt zu ermöglichen. Dabei entwerfen, bauen und starten die Studenten eine eigene Rakete, führen sämtliche Tests durch und durchlaufen fünf Reviews. Bei solch einem Review werden alle kritischen Systeme überprüft. Dazu zählen etwa die Triebwerke, die Tanks und das Funksystem. Hier der Bau der Startrampe für die Rakete Faust. Bild: DLR

  • Begleitet wurden die STERN-Studenten dabei von den Experten der Mobilen Raketenbasis (MORABA) des DLR und vom Forschungs-, Test- und Entwicklungszentrum für Raketenantriebe am DLR-Standort in Lampoldshausen. Hier können die Nachwuchs-Ingenieure - ebenso wie am DLR-Standort Trauen - auch ihre Triebwerkstests durchführen. Bild: DLR

    Begleitet wurden die STERN-Studenten dabei von den Experten der Mobilen Raketenbasis (MORABA) des DLR und vom Forschungs-, Test- und Entwicklungszentrum für Raketenantriebe am DLR-Standort in Lampoldshausen. Hier können die Nachwuchs-Ingenieure - ebenso wie am DLR-Standort Trauen - auch ihre Triebwerkstests durchführen. Bild: DLR

  • Hinsichtlich der maximalen Flughöhe gibt es keine Beschränkungen. Die Teilnehmer können selbst entscheiden, ob sie den Antrieb eigenständig entwickeln oder einen kommerziellen Raketenmotor verwenden. Grundbedingung ist eine Telemetrie-Einheit als Nutzlast, die während des Fluges wichtige Daten wie die Beschleunigung, Flughöhe und die Geschwindigkeit zur Erde sendet. Aber nicht nur Ingenieurswissen und technisches Verständnis sind gefragt, auch der Erfahrungsaustausch zwischen den Teams ist wichtig. Bild: DLR

    Hinsichtlich der maximalen Flughöhe gibt es keine Beschränkungen. Die Teilnehmer können selbst entscheiden, ob sie den Antrieb eigenständig entwickeln oder einen kommerziellen Raketenmotor verwenden. Grundbedingung ist eine Telemetrie-Einheit als Nutzlast, die während des Fluges wichtige Daten wie die Beschleunigung, Flughöhe und die Geschwindigkeit zur Erde sendet. Aber nicht nur Ingenieurswissen und technisches Verständnis sind gefragt, auch der Erfahrungsaustausch zwischen den Teams ist wichtig. Bild: DLR

  • Erleichtert über den erfolgreichen Ausgang seiner Mission ist auch das Leonis-Team von der TU Braunschweig. Die drei Meter lange und 24 Kilogramm schwere Experimentalrakete mit dem Namen "Faust" hatte bei ihrem Flug am 22. Oktober eine Höhe von sechs Kilometern erreicht. Eine Besonderheit der Rakete ist das Hybrid-Triebwerk, eine Eigenentwicklung der Studenten. Da solch ein Motor "Marke Eigenbau" einzigartig ist, musste das Team auch das System zur Betankung selbst entwerfen. Als Treibstoff wählte es eine Kombination aus Lachgas und einem Festbrennstoff mit gummiartiger Konsistenz. Bild: DLR

    Erleichtert über den erfolgreichen Ausgang seiner Mission ist auch das Leonis-Team von der TU Braunschweig. Die drei Meter lange und 24 Kilogramm schwere Experimentalrakete mit dem Namen "Faust" hatte bei ihrem Flug am 22. Oktober eine Höhe von sechs Kilometern erreicht. Eine Besonderheit der Rakete ist das Hybrid-Triebwerk, eine Eigenentwicklung der Studenten. Da solch ein Motor "Marke Eigenbau" einzigartig ist, musste das Team auch das System zur Betankung selbst entwerfen. Als Treibstoff wählte es eine Kombination aus Lachgas und einem Festbrennstoff mit gummiartiger Konsistenz. Bild: DLR

  • Das technisch anspruchsvollste Raketentriebwerk entwickelte das HyEnD-Team von der Universität Stuttgart für Heros (Hybrid Experimental Rocket Stuttgart): Ihr ebenfalls selbst konstruierter Hybrid-Motor entwickelt einen Schub, der mehr als dreimal so hoch ist wie der stärkste Antrieb der anderen Stern-Raketen. Dementsprechend sind auch die Anforderungen an das Fallschirmsystem, an dem die Rakete nach dem Flug zu Boden schwebt, und die Telemetrie-Einheit deutlich komplexer. Die Treibstoffkombination besteht aus Lachgas und Wachs. Bild: DLR

    Das technisch anspruchsvollste Raketentriebwerk entwickelte das HyEnD-Team von der Universität Stuttgart für Heros (Hybrid Experimental Rocket Stuttgart): Ihr ebenfalls selbst konstruierter Hybrid-Motor entwickelt einen Schub, der mehr als dreimal so hoch ist wie der stärkste Antrieb der anderen Stern-Raketen. Dementsprechend sind auch die Anforderungen an das Fallschirmsystem, an dem die Rakete nach dem Flug zu Boden schwebt, und die Telemetrie-Einheit deutlich komplexer. Die Treibstoffkombination besteht aus Lachgas und Wachs. Bild: DLR