Sternrad-Rover Asguard IV in Höhle,

Der Sternrad-Rover Asguard IV navigiert autonom durch eine Lavahöhle auf Teneriffa. (Bild: DFKI)

Lavahöhlen, die auf der Erde unter anderem auf den Kanaren vorkommen, sind in der Raumfahrt von großem Interesse. Durch ihre geschützte Lage stellen sie auf dem Mond oder anderen Himmelskörpern potenzielle Standorte für zukünftige Basislager dar. Um diese auszukundschaften, bieten Roboter ideale Voraussetzungen, da sie ohne aufwendige Infrastruktur langfristig auf fremden Planeten operieren können. Allerdings besitzen bisherige Systeme nicht die Fähigkeiten, die sie bräuchten, um solch unwegsame Gebiete autonom erkunden zu können.

Im Projekt Entern entwickelten die Wissenschaftler des DFKI und der Universität Bremen daher innovative Softwaretools, die den teil- und vollautonomen Betrieb von Robotern in schwer zugänglichen Umgebungen ermöglichen. Als Testplattformen dienten der sechsbeinige Laufroboter CrexX sowie der Sternrad-Rover Asguard IV, die ihre Fähigkeiten im Rahmen der Feldtestkampagne auf Teneriffa erfolgreich unter Beweis stellten.

Hohe Anforderungen an Navigation und Mobilität

Laufroboter Crex,
Der sechsbeinige Laufroboter Crex erkundet autonom eine Lavahöhle auf Teneriffa. (Bild: DFKI)

Die Exploration von Höhlen im Weltraum stellt dabei besondere Anforderungen an die Methoden der Navigation und die mobilen Fähigkeiten eines Roboters. Zur Orientierung kann er lediglich auf Satellitenbilder und Höhenkarten, die aus dem Orbit aufgenommen wurden, zurückgreifen. Bei dieser komplexen Aufgabe wird der Roboter durch einen menschlichen Operator überwacht und unterstützt. Dafür entwickelten die Wissenschaftler in Entern eine weltraumtaugliche Kommunikationslösung, die eine sichere Datenübertragung zwischen dem Robotersystem und der Bodenstation über eine Satellitenverbindung ermöglicht.

Wird die Kommunikation zeitweilig unterbrochen, zum Beispiel wenn der Roboter in eine Höhle fährt oder bei anderweitiger Abschattung der Kommunikationsbedingungen, hat der Operator die Möglichkeit, eine bestimmte Kommandosequenz für einen längeren Zeitraum zu bestimmen oder den Roboter autonom agieren zu lassen. Ein interaktives Wegplanungstool stellt ihm dabei eine Vorhersage über das Verhalten des Roboters während der Ausführung der Kommandosequenz bereit, so dass er diesen bei der Wegfindung unterstützen kann.

Simulation für den richtigen Weg

DFKI-Ingenieure in Höhle,
Die Forscher des DFKI Robotics Innovation Center und der Universität Bremen bei den Feldtests auf Teneriffa. (Bild: DFKI)

In besonders schwierigen Situationen, wie zum Beispiel bei der Überwindung eines Grabens oder dem Erklimmen einer Steigung, setzen die Wissenschaftler auf eine sogenannte „In the loop-Simulation“. Hierbei wird die Ausführung der erstellten Bewegungspläne zunächst simuliert, bevor sie der Roboter tatsächlich ausführt.

Dafür erstellt das System eigenständig genaue physikalische Simulationen seiner Umwelt. Die Repräsentation des Umweltmodells in der Simulation und für den Roboter ist dabei identisch, so dass dieser im Falle eines Hindernisses interaktiv mit Hilfe eines Operators aus verschiedenen Szenarien eine Lösung zur Überwindung des Hindernisses finden kann.

Das Projekt Entern wurde von Oktober 2014 bis Dezember 2017 vom Bundesministerium für Wirtschaft und Energie (BMWi) durch das Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR) gefördert. hei

Sie möchten gerne weiterlesen?