Zu Beginn des Projekts hat Kuka einen schon vorhandenen omniRob-Roboter so angepasst, dass seine Reichweite für das Spektrum der vorgesehenen Aufgaben geeignet ist. Beispielsweise ergänzten die Experten die Plattform durch eine drehbare, vertikale Linearachse, sodass der komplette Roboter zwölf Freiheitsgrade und eine menschenähnliche Reichweite besitzt. Die Koordinierung eines solch hyperredundanten Systems zur Abstimmung aller Bewegungen - echte mobile Manipulation - war notwendig, damit der Roboter sich intuitiv programmieren lässt und seine Aufgaben erfüllen kann.

Die Forscher vom Fraunhofer IFF in Magdeburg entwickelten taktile Sensoren und ein kamerabasiertes Arbeitsraumüberwachungssystem als Sicherheitstechnologien für die direkte Mensch-Roboter-Kollaboration. Die taktilen Sensoren erkennen Berührungen: Sobald eine biomechanische Belastungsgrenze erreicht wird, stoppt der Roboter. Zuvor ermittelten die Forscher maximal zulässige Geschwindigkeiten für den Roboter.

Sicherheitssensoren,
Verschiedene Sicherheitssensoren verhindern bei der engen Zusammenarbeit mit dem Menschen eine Kollision. (Bild: Kuka)

Diese Daten sind für die weltweite Robotik sehr wichtig – sie helfen bei der Validierung kollaborierender Roboter mit Sicherheitsmaßnahmen zur Kraft-und-Leistungsbegrenzung. Außerdem können die taktilen Sensoren für die haptische Interaktion mit dem Roboter verwendet werden. Anwenderstudien haben bestätigt: Der Bediener führt den Roboter intuitiv und einfach so, wie er sich bewegen soll.

Das Arbeitsraumüberwachungssystem besteht aus einem Tiefenbildsensoren mit drei Stereokamerapaaren. Es erfasst die Bewegung des Werkzeugs und legt ein virtuelles Schutzfeld um diesen Bereich. Bewegt sich nun ein Mensch oder ein Objekt in dieses Schutzfeld, hält der Roboter an und vermeidet eine Kollision.

Workspace Monitoring,
Bevor die Roboter zum Einsatz kommen, werden in verschiedenen Tests die Einsatzmöglichkeiten durchgespielt. Dadurch werden Kollisionen bei Bewegungsabläufen vermieden. (Bild: Projekt Valeri)

Die IDPSA-Experten entwickelten ein Werkzeug zum Auftragen der Dichtmasse und integrierten es die Robotersteuerung. Damit kann das Auftragen der Dichtmasse eng mit der Geschwindigkeit und Orientierung des Roboters abgestimmt werden. Entlang der gekrümmten und flachen Bahnen wird die Dichtmasse deutlich besser aufgetragen.

Die Forschungseinrichtung Prodintec integrierte nach Anpassungen ein Kamera-basiertes Werkzeug für die Bauteilortung. Die Kamera erfasst 3D-Punktwolken und kann mit einer CAD-Matching-Software die Bauteile erkennen und orten. Somit kann Valeri die Bauteile, die teilweise auf Rollen stehen und nicht immer in der gleichen Position in der Fabrik stehen, lokalisieren und bearbeiten. Weiterhin entwickelte und integrierte die Firma Profactor zwei weitere Werkzeuge, mit denen der Valeri-Roboter die Dichtmasse und die geflochtenen CFK-Bauteileprüfen kann.

Die Ergebnisse des Valeri-Projekts sehen Sie im folgenden Video vom Fraunhofer IFF

Sie möchten gerne weiterlesen?