Robotische Systeme in Utah, Bild: DFKI/Florian Cordes

Die robotischen Systeme SherpaTT und Coyote III mit BaseCamp (von links) in der Testumgebung in Utah. Bild: DFKI/Florian Cordes

In FT-Utah erforscht das DFKI gemeinsam mit Wissenschaftlern der Universität Bremen den Einsatz von Robotern bei der Erkundung fremder Planeten. Teil des Projekts war die vierwöchige Feldtestkampagne in der Wüste des amerikanischen Bundesstaats, in der die Systeme außerhalb des Labors in einer natürlichen, unstrukturierten Umgebung erprobt und zusammen mit einer in Bremen stationierten Kontrollstation eine komplette Missionssequenz simulieren sollten.

Dafür reisten sechs DFKI-Wissenschaftler Ende Oktober in die abgelegene Gegend nahe der Ortschaft Hanksville, wo sie die Basisstation für die Feldtests errichteten. Die Roboter sowie das benötigte Equipment hatten die Reise bereits einige Wochen zuvor, sicher in einem Schiffscontainer verstaut, angetreten.

Roboter SherpaTT und Coyote III im Einsatz

SherpaTT und Coyote III, Bild: DFKI
SherpaTT und Coyote III im Rendezvous-Manöver mit angedockten Nutzlsatcontainern an beiden Rovern. Bild: DFKI

Zu den in Utah getesteten Systemen gehörten der Schreit- und Fahrrover SherpaTT sowie der Mikro-Rover Coyote III, die beide im Rahmen des Vorhabens TransTerrA am Robotics Innovation Center entwickelt und aufgebaut wurden.

Der etwa 150 Kilogramm schwere SherpaTT, der sich dank seines aktiven Fahrwerks besonders gut für unwegsames Gelände eignet, verfügt über sechs standardisierte elektromechanische Schnittstellen, die unter anderem dem Transport größerer Nutzlasteinheiten dienen.

Zudem ist der Rover mit einem etwa zwei Meter langen, zentral angebrachten Roboterarm – einem sogenannten Manipulator – mit sechs Freiheitsgraden ausgestattet, der es ihm ermöglicht, Bodenproben zu entnehmen und diese an den kleineren, mit 15 Kilogramm deutlich leichteren Coyote III zu übergeben.

Auch der Mikro-Rover erreicht durch den Einsatz von Sternrädern in Kombination mit einem passiven Fahrwerk eine hohe Mobilität in unstrukturiertem Gelände, insbesondere auf Steilhängen. Über zwei Schnittstellen lässt er sich mit Nutzlastcontainern und einem Roboterarm erweitern. Auf diese Weise kann auch Coyote III Nutzlasten befördern, weshalb er im Rahmen der Feldtests dem größeren SherpaTT als Supportsystem diente.

Immobile robotische Einheiten komplettieren das Duo

Komplettiert wurde das ungleiche Roboter-Team durch immobile robotische Einheiten, und zwar durch ein sogenanntes BaseCamp sowie verschiedene mit elektromechanischen Schnittstellen ausgestattete Nutzlastcontainer.

Das BaseCamp wurde im Rahmen der Feldtests sowohl als Kommunikationsstation zur Weiterleitung von Daten als auch als modularer Knotenpunkt zur Aufnahme der Nutzlastcontainer eingesetzt, und von SherpaTT über eine Schnittstelle transportiert und aufgestellt.

Die Nutzlastcontainer kamen in FT-Utah in erster Linie für Probenaufnahmen zur Anwendung. Die standardisierten Boxen können aber auch mit andersartiger Sensorik, Batteriepaketen oder Instrumenten ausgestattet werden.

Für die Kontrolle der angestrebten Mission wurde ein Leitstand am Robotics Innovation Center in Bremen eingerichtet, der per Satellitenlink eine Kommunikationsverbindung zu den Robotern in Utah aufbaute. Das Virtual Reality Lab, eine interaktive 3D-Multiprojektionsanlage, ermöglichte es dem Operator, den Missionsstatus in einer virtuellen Realität zu beobachten.

Mann im Virtual Reality Lab, Bild: DFKI/Florian Cordes
Missionssteuerung mittels Exoskelett aus dem Bremer Leitstand mit Visualisierung einer Umgebungskarte und Kamerabildern von SherpaTT und Coyote III. Bild: DFKI/Florian Cordes

Neben einem Zeigegerät diente ein zweiarmiges Oberkörper-Exoskelett als Eingabe- und Kontrollgerät. Damit konnte der Operator die Roboter in Utah intuitiv mit natürlichen Bewegungsmustern steuern. Durch ein integriertes Force-Feedback erhielt er zudem direkte Rückmeldung über die auf den Manipulator von SherpaTT wirkenden Kräfte, wodurch er diesen in der über 8.300 Kilometer entfernten Umgebung sicher bewegen und platzieren konnte.

Neben der Kontrollstation in Bremen errichteten die Wissenschaftler auf dem Testgelände in Utah einen mobilen Leitstand. Dieser ermöglichte nicht nur den Test und die Durchführung von Missionssequenzen direkt vor Ort, sondern diente auch der Übermittlung der von den Robotern empfangenen Daten via Satellit nach Bremen.

Probenrückführungsmission geglückt

Bei den Feldversuchen in Utah konnten Teile einer sogenannten Mars-Sample-Return-Mission (zu Deutsch „Probenrückführungsmission“) erfolgreich simuliert werden. Die einzelnen Missionsschritte wurden von der Bremer Kontrollstation aus gesteuert.

Dafür forderte der Operator zunächst dreidimensionale Umgebungskarten von den Systemen sowie Fotos der Roboterkameras an, um sich ein Bild von der Umgebung machen zu können. Anschließend setzte er Wegpunkte in die Karten, die von den zwei Rovern autonom angefahren wurden.

Am Ort der Probenahme angekommen, gelang es, den Manipulator von SherpaTT mithilfe des Exoskeletts manuell zu steuern. Nach einem Rendezvous der beiden Roboter navigierte Coyote III entlang der gesetzten Wegpunkte schließlich selbstständig zurück zum Ausgangspunkt.

Roboter-Team meistert fremdes Gelände

Coyote III in der Wüste, Bild: DFKI/Tobias Stark
Coyote III beim Erklimmen eines felsigen Hügels. Bild: DFKI/Tobias Stark

Das autonome Verhalten der Roboter zu realisieren, erwies sich als große Herausforderung innerhalb der Feldtestkampagne, da nicht nur ein einzelnes System, sondern ein Roboter-Team mit verschiedenartiger Sensorik zum Einsatz kam.

Dieses musste sich – abgesehen von sehr groben Übersichtskarten – in komplett unbekanntem Gelände sicher bewegen. Dafür setzten die Wissenschaftler des DFKI auf spezielle Selbstlokalisierungs- und Kartierungsalgorithmen, welche die Informationen aus den unterschiedlichen Sensoren integrierten und eine entsprechende Karte daraus generierten.

Mobilitätstest für die Marsmission

Neben der kooperativen Mission wurden die Systeme auch einzeln hinsichtlich ihrer Mobilität in unstrukturiertem Gelände getestet.

So überwand SherpaTT erfolgreich Steigungen von bis zu 28 Grad – wobei seine aktive Bodenanpassung den permanenten Bodenkontakt aller vier Räder mit annähernd gleicher Lastverteilung sicherstellte. Coyote III bewältigte Steigungen von bis zu 42 Grad und bezwang mithilfe eines Seilsystems sogar Steilklippen mit Überhängen.

Insgesamt konnten die DFKI-Wissenschaftler durch die Feldtestkampagne wichtige Erkenntnisse zur Robustheit und Bewegungsfähigkeit ihrer Systeme, sowie zur autonomen und kooperativen Erkundung unstrukturierter Umgebungen gewinnen. Durch den Einsatz des Virtual Reality Labs gelang es ihnen zudem, eine intuitive Missionssteuerung unter realitätsnahen Bedingungen zu demonstrieren. hei

Roboter-Team simuliert Marsmission in Utah (Quelle: DFKI)