• Das Projekt "Midas" - Maßnahmen und Instrumente des Aktiven Schallschutzes bei Fluglärm - zielt darauf ab, einen Katalog sinnvoller Maßnahmen für den aktiven Schallschutz zu erstellen. Unter anderem führt das DLR 2016 weltweit erstmalig im Rahmen des Projekts eine Studie zur Untersuchung der nächtlichen Fluglärmwirkung auf den Schlaf von Kindern durch. Weiterhin erprobt das DLR im Simulator Aves, in Flugversuchen mit dem A320 Atra sowie im Regelbetrieb des Frankfurter Flughafens ein Piloten-Assistenzsystem für lärmoptimierte Anflugverfahren. Bild: DLR

    Das Projekt "Midas" - Maßnahmen und Instrumente des Aktiven Schallschutzes bei Fluglärm - zielt darauf ab, einen Katalog sinnvoller Maßnahmen für den aktiven Schallschutz zu erstellen. Unter anderem führt das DLR 2016 weltweit erstmalig im Rahmen des Projekts eine Studie zur Untersuchung der nächtlichen Fluglärmwirkung auf den Schlaf von Kindern durch. Weiterhin erprobt das DLR im Simulator Aves, in Flugversuchen mit dem A320 Atra sowie im Regelbetrieb des Frankfurter Flughafens ein Piloten-Assistenzsystem für lärmoptimierte Anflugverfahren. Bild: DLR

  • Mit den Forschungsmissionen "Polstracc", "GW-LCycle" und "Salsa" soll Anfang 2016 in mehrwöchigen Flugversuchen erkundet werden, wie die Zusammensetzung der Atmosphäre in der Nordpolarregion variiert. Vom schwedischen Kiruna aus werden mit den Forschungsflugzeugen Halo und Falcon des DLR Messflüge unternommen, um bisher noch unzureichend verstandene Aspekte der Wolkenphysik in Polarregionen, des Transports von Spurenstoffen und der dynamischen Kopplung zwischen unterer und mittlerer Atmosphäre zu untersuchen. Dafür wird Halo DLR-seitig mit einem Ozon- und Wasserdampf-Lidar-System, einem Massenspektrometer und einem Stickoxid-Detektor ausgerüstet. Die Falcon verfügt über ein Wind-Lidar, weitere Spurengasinstrumente und ein Spektrometer, welches Luftleuchten in 85 Kilometer Höhe untersucht. Bei einigen Flugexperimenten fliegen Halo und Falcon übereinander in Formation, um ein möglichst vollständiges Bild der atmosphärischen Bedingungen zu erzielen. Bild: DLR

    Mit den Forschungsmissionen "Polstracc", "GW-LCycle" und "Salsa" soll Anfang 2016 in mehrwöchigen Flugversuchen erkundet werden, wie die Zusammensetzung der Atmosphäre in der Nordpolarregion variiert. Vom schwedischen Kiruna aus werden mit den Forschungsflugzeugen Halo und Falcon des DLR Messflüge unternommen, um bisher noch unzureichend verstandene Aspekte der Wolkenphysik in Polarregionen, des Transports von Spurenstoffen und der dynamischen Kopplung zwischen unterer und mittlerer Atmosphäre zu untersuchen. Dafür wird Halo DLR-seitig mit einem Ozon- und Wasserdampf-Lidar-System, einem Massenspektrometer und einem Stickoxid-Detektor ausgerüstet. Die Falcon verfügt über ein Wind-Lidar, weitere Spurengasinstrumente und ein Spektrometer, welches Luftleuchten in 85 Kilometer Höhe untersucht. Bei einigen Flugexperimenten fliegen Halo und Falcon übereinander in Formation, um ein möglichst vollständiges Bild der atmosphärischen Bedingungen zu erzielen. Bild: DLR

  • Im März 2016 startet der erste Teil der europäisch-russischen Mission ExoMars zum Roten Planeten - mit an Bord: der Trace Gas Orbiter, der Spurengase in der Atmosphäre des Mars untersuchen wird sowie der Landedemonstrator Schiaparelli. Im Oktober 2016 soll die Sonde an ihrem Ziel ankommen und den Lander auf dem Mars absetzen. Das DLR hat mit digitalen Höhenmodellen der MarsExpress-Sonde bei der Auswahl eines geeigneten Landeplatzes unterstützt und ist auch am Stereokamera-System CaSSIS der ExoMars-Mission wissenschaftlich beteiligt. Auf dem Lander Schiaparelli befinden sich zudem vier Mess-Sensoren des DLR, die unter anderem Daten für den zweiten Teil der Mission im Jahr 2018 erfassen werden. Der Eintritt in die Atmosphäre wurde in den DLR-Windkanälen getestet. Das Träger-Modul wurde von der deutschen Firma OHB gebaut. Das DLR-Raumfahrmanagement koordiniert die deutschen Beiträge für die europäische Weltraumorganisation ESA. Bild: ESA/ATG medialab

    Im März 2016 startet der erste Teil der europäisch-russischen Mission ExoMars zum Roten Planeten - mit an Bord: der Trace Gas Orbiter, der Spurengase in der Atmosphäre des Mars untersuchen wird sowie der Landedemonstrator Schiaparelli. Im Oktober 2016 soll die Sonde an ihrem Ziel ankommen und den Lander auf dem Mars absetzen. Das DLR hat mit digitalen Höhenmodellen der MarsExpress-Sonde bei der Auswahl eines geeigneten Landeplatzes unterstützt und ist auch am Stereokamera-System CaSSIS der ExoMars-Mission wissenschaftlich beteiligt. Auf dem Lander Schiaparelli befinden sich zudem vier Mess-Sensoren des DLR, die unter anderem Daten für den zweiten Teil der Mission im Jahr 2018 erfassen werden. Der Eintritt in die Atmosphäre wurde in den DLR-Windkanälen getestet. Das Träger-Modul wurde von der deutschen Firma OHB gebaut. Das DLR-Raumfahrmanagement koordiniert die deutschen Beiträge für die europäische Weltraumorganisation ESA. Bild: ESA/ATG medialab

  • Am 27. Januar 2016 soll die erste Nutzlast aus dem EDRS-Programm der ESA mit einem EUTELSAT 9B Satelliten an Bord einer russischen Proton-Rakete vom Weltraumbahnhof in Baikonur, Kasachstan, aus starten. Mit diesem System können sehr große Datenmengen der auf relativ niedrigen Umlaufbahnen um die Erde kreisenden Erdbeobachtungssatelliten zeitnah über eine Relaisstation zur Erde übertragen werden. Derzeit können die Daten bei jeder Erdumrundung des Satelliten nur für kurze Zeit vom Satelliten an die Bodenstation abgegeben werden, nämlich genau dann, wenn der Satellit die Bodenstation überfliegt. Dies geschieht nur einmal in rund 100 Minuten, vorausgesetzt, die Bodenstation befindet sich in Sichtweite der Satellitenbahn. Das limitiert die übertragbare Datenmenge sehr. Die EDRS-Nutzlast besteht hauptsächlich aus in Deutschland entwickelten und gebauten Laser Communication Terminals, mit denen außerordentlich hohe Datenraten in Echtzeit übermittelt werden können. Das DLR Raumfahrtmanagement hat im Auftrag der Bundesregierung insgesamt mehr als 280 Millionen Euro in die EDRS/LCT-Technologie investiert. Bild: GlobalNet/ESA

    Am 27. Januar 2016 soll die erste Nutzlast aus dem EDRS-Programm der ESA mit einem EUTELSAT 9B Satelliten an Bord einer russischen Proton-Rakete vom Weltraumbahnhof in Baikonur, Kasachstan, aus starten. Mit diesem System können sehr große Datenmengen der auf relativ niedrigen Umlaufbahnen um die Erde kreisenden Erdbeobachtungssatelliten zeitnah über eine Relaisstation zur Erde übertragen werden. Derzeit können die Daten bei jeder Erdumrundung des Satelliten nur für kurze Zeit vom Satelliten an die Bodenstation abgegeben werden, nämlich genau dann, wenn der Satellit die Bodenstation überfliegt. Dies geschieht nur einmal in rund 100 Minuten, vorausgesetzt, die Bodenstation befindet sich in Sichtweite der Satellitenbahn. Das limitiert die übertragbare Datenmenge sehr. Die EDRS-Nutzlast besteht hauptsächlich aus in Deutschland entwickelten und gebauten Laser Communication Terminals, mit denen außerordentlich hohe Datenraten in Echtzeit übermittelt werden können. Das DLR Raumfahrtmanagement hat im Auftrag der Bundesregierung insgesamt mehr als 280 Millionen Euro in die EDRS/LCT-Technologie investiert. Bild: GlobalNet/ESA

  • In Jülich wird Ende des Jahres der weltweit größte Hochleistungsstrahler, SynLight, in einem eigens dafür errichteten Gebäude des Technologiezentrums Jülich fertiggestellt. Zirka 150 Lampen können dann eine Lichtintensität erzeugen, die mindestens dem 10.000-fachen der natürlichen Sonnenstrahlung auf der Erdoberfläche entspricht. Mit der künstlichen Sonne können die Solarforscher des DLR unabhängig von Wetterbedingungen und Jahreszeit experimentieren und so ihre Forschungsarbeiten schneller vorantreiben. Die künstliche Sonne sorgt zudem für die immer gleichen, fest definierten Strahlungsbedingungen, was eine bessere Auswertung und Einordnung von wissenschaftlichen Versuchen ermöglicht. Vor allem werden die Wissenschaftler mit der neuen Anlage intensiv an neuen Verfahren zur Herstellung solarer Treibstoffe arbeiten und neue Komponenten für Solarkraftwerke entwickeln und testen. Bild: DLR

    In Jülich wird Ende des Jahres der weltweit größte Hochleistungsstrahler, SynLight, in einem eigens dafür errichteten Gebäude des Technologiezentrums Jülich fertiggestellt. Zirka 150 Lampen können dann eine Lichtintensität erzeugen, die mindestens dem 10.000-fachen der natürlichen Sonnenstrahlung auf der Erdoberfläche entspricht. Mit der künstlichen Sonne können die Solarforscher des DLR unabhängig von Wetterbedingungen und Jahreszeit experimentieren und so ihre Forschungsarbeiten schneller vorantreiben. Die künstliche Sonne sorgt zudem für die immer gleichen, fest definierten Strahlungsbedingungen, was eine bessere Auswertung und Einordnung von wissenschaftlichen Versuchen ermöglicht. Vor allem werden die Wissenschaftler mit der neuen Anlage intensiv an neuen Verfahren zur Herstellung solarer Treibstoffe arbeiten und neue Komponenten für Solarkraftwerke entwickeln und testen. Bild: DLR

  • Automatisiertes Fahren ist zurzeit das am stärksten diskutierte Thema im Straßenfahrzeugbereich. Ziel ist dabei eine Unterstützung des Fahrers bei der Übernahme der Fahraufgabe durch Assistenzsysteme. Dies gäbe dem Fahrer zum Beispiel die Möglichkeit, im Internet zu surfen oder E-Mails zu schreiben, während das Auto selbständig fährt. Bei einer Vorstellung der bisherigen Ergebnisse des DLR-Projekts "Fahrzeugintelligenz und mechatronisches Fahrwerk" wird im April 2016 unter anderem ein Forschungsfahrzeug selbstständig im städtischen Verkehr unterwegs sein, dabei seine Geschwindigkeit an das Vorderfahrzeug anpassen und mit den Ampelsystemen kommunizieren. Solche Systeme kamen bislang nur auf Autobahnen zum Einsatz, die in dem Projekt erarbeiteten Kenntnisse sind ein wichtiger Schritt in Richtung "automatisiertes Fahren in der Stadt". Dieses Vorhaben ist im DLR eingebettet in die Forschungsaktivitäten des Next Generation Car. Im Rahmen des BMWi-Projekts Pegasus mit einem Fördervolumen von 36 Millionen Euro werden zudem Test- und Freigabeverfahren für automatisierte Fahrzeuge konzipiert und entwickelt, die im Jahr 2020 als Produkte für den Markt erwartet werden. Bild: DLR

    Automatisiertes Fahren ist zurzeit das am stärksten diskutierte Thema im Straßenfahrzeugbereich. Ziel ist dabei eine Unterstützung des Fahrers bei der Übernahme der Fahraufgabe durch Assistenzsysteme. Dies gäbe dem Fahrer zum Beispiel die Möglichkeit, im Internet zu surfen oder E-Mails zu schreiben, während das Auto selbständig fährt. Bei einer Vorstellung der bisherigen Ergebnisse des DLR-Projekts "Fahrzeugintelligenz und mechatronisches Fahrwerk" wird im April 2016 unter anderem ein Forschungsfahrzeug selbstständig im städtischen Verkehr unterwegs sein, dabei seine Geschwindigkeit an das Vorderfahrzeug anpassen und mit den Ampelsystemen kommunizieren. Solche Systeme kamen bislang nur auf Autobahnen zum Einsatz, die in dem Projekt erarbeiteten Kenntnisse sind ein wichtiger Schritt in Richtung "automatisiertes Fahren in der Stadt". Dieses Vorhaben ist im DLR eingebettet in die Forschungsaktivitäten des Next Generation Car. Im Rahmen des BMWi-Projekts Pegasus mit einem Fördervolumen von 36 Millionen Euro werden zudem Test- und Freigabeverfahren für automatisierte Fahrzeuge konzipiert und entwickelt, die im Jahr 2020 als Produkte für den Markt erwartet werden. Bild: DLR

  • Für sichere, schnellere und automatisierte Abläufe nutzt die Schifffahrt immer häufiger Satellitendaten und IT-Systeme. Solche Systeme sind jedoch durch manipulative Eingriffe von außen gefährdet. So ist zum Beispiel die Navigation von Schiffen auf Grundlage von globalen Navigationssatellitensystemen - GNSS - wie GPS oder Galileo nicht hinreichend geschützt. Mit sogenanntem GPS-Spoofing, bei dem Täuschsignale ausgesendet werden, die einen GPS-Satelliten imitieren, kann nachweislich der Kurs eines Schiffes geändert werden. Eine andere Methode, das sogenannte GPS-Jamming, verhindert massiv den Empfang von Satellitensignalen, so dass die GNSS-Navigationssysteme eines Schiffes nicht mehr funktionieren. Das DLR arbeitet daran, die Navigationssysteme robuster gegen Angriffe von außen zu machen. Um manipulative Eingriffe in die Navigationssysteme der Schiffe besser untersuchen zu können, ermöglicht die Bundesnetzagentur dem DLR im Rahmen einer Frequenzgenehmigung den temporären Test von Stör- und Täuschsendern in einem kleinen und von nur sehr wenig Schiffsverkehr frequentierten Gebiet in der Ostsee. In diesem Zusammenhang wird im Frühjahr eine Versuchskampagne des DLR-Instituts für Kommunikation und Navigation in dem Testgebiet durchgeführt. Bild: DLR

    Für sichere, schnellere und automatisierte Abläufe nutzt die Schifffahrt immer häufiger Satellitendaten und IT-Systeme. Solche Systeme sind jedoch durch manipulative Eingriffe von außen gefährdet. So ist zum Beispiel die Navigation von Schiffen auf Grundlage von globalen Navigationssatellitensystemen - GNSS - wie GPS oder Galileo nicht hinreichend geschützt. Mit sogenanntem GPS-Spoofing, bei dem Täuschsignale ausgesendet werden, die einen GPS-Satelliten imitieren, kann nachweislich der Kurs eines Schiffes geändert werden. Eine andere Methode, das sogenannte GPS-Jamming, verhindert massiv den Empfang von Satellitensignalen, so dass die GNSS-Navigationssysteme eines Schiffes nicht mehr funktionieren. Das DLR arbeitet daran, die Navigationssysteme robuster gegen Angriffe von außen zu machen. Um manipulative Eingriffe in die Navigationssysteme der Schiffe besser untersuchen zu können, ermöglicht die Bundesnetzagentur dem DLR im Rahmen einer Frequenzgenehmigung den temporären Test von Stör- und Täuschsendern in einem kleinen und von nur sehr wenig Schiffsverkehr frequentierten Gebiet in der Ostsee. In diesem Zusammenhang wird im Frühjahr eine Versuchskampagne des DLR-Instituts für Kommunikation und Navigation in dem Testgebiet durchgeführt. Bild: DLR